

T Stacie Barbaric I

Convolutional Neural Network Team

Stacie Barbarick, Cass Bliss, Joanna Harden

https://www.jeremyjordan.me/convolutional-n eural-networks/ https://www.istockphoto.com/photos/neurons-white-back ground

Review:

- CNN: neural network that typically contains several types of layers, including a convolutional layer, a pooling layer, and activation layers.
- Can find and extract useful features from these images
- Very specific features can be detected anywhere on input images
- Different Models of CNNs we explored:

fc 3 fc 4 **Fully-Connected Fully-Connected** Neural Network Neural Network Conv 1 Conv 2 **ReLU** activation Convolution Convolution (5 x 5) kernel (5 x 5) kernel Max-Pooling Max-Pooling (with valid padding valid padding (2×2) (2 x 2) dropout) 0 2 n2 channels n2 channels 9 n1 channels n1 channels INPUT $(8 \times 8 \times n2)$ $(4 \times 4 \times n2)$ (24 x 24 x n1) $(12 \times 12 \times n1)$ (28 x 28 x 1) OUTPUT n3 units

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

EX: VGG16, ResNet50, Custom CNN

Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middie: a plain network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted boncuts increase dimensions. Table I shows more details and other variants.

Residual Network (ResNet)

- Allowed training of deep neural networks (150+layers) successfully.
- The main benefit of a very deep network: can represent very complex functions

and learn features at many different levels of abstraction.

- However, when the network depth increasing, accuracy gets saturated
- Explicitly let stacked layers fit a residual mapping
- Plain baselines are mainly inspired by the philosophy of VGG nets.
- The shortcut connections perform identity mapping, and their outputs are added

to the outputs of the stacked layers. <u>Identity shortcut connections add neither</u>

extra parameter nor computational complexity.

He, Kaiming, et al. "Deep Residual Learning for Image Recognition." 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 10 Dec. 2015, doi:10.1109/cvpr.2016.90.

Preliminary training with variety of architecture like VGG16, ResNet50 (w/o most parameters), ResNet50v2

However, no evaluate function, no validation data evaluation included

ResNet50 with varied parameters and optimizers and variations within the optimizer (SGD) - Evaluate function applied but no Validation Data

ResNet 50 with differing optimizers; plotting accuracy and validation

Accuracy:	.7946
Validation	Accuracy: .8121
SGD (lr =	.2)
Accuracy:	.7584
Validation	Accuracy: .3515
SGD (lr =	.02)
Accuracy:	.8497
Validation	Accuracy: 8848

Cass

My Chaotic & Obsessive Process:

- Taking the general CNN model, rerouting data input
- Taking away layers
- Adding Conv 2D layers (smaller and bigger filters)
- Trying different batch values
- Trying different epoch values
- Really didn't touch the dense/ flatten layers
- Looked for higher starting accuracy before committing to full run throughs
- Ended up with a funnel shaped conv2d and pooling layer structure
- Accidentally double trained model

Cass Top Model: "Miraculum"

Model: "sequential"			
Layer (type)	Output	Shape	Param
conv2d (Conv2D)	(None,	296, 296, 16)	416
<pre>max_pooling2d (MaxPooling2D)</pre>	(None,	148, 148, 16)	0
conv2d_1 (Conv2D)	(None,	144, 144, 32)	12832
max_pooling2d_1 (MaxPooling2	(None,	72, 72, 32)	0
conv2d_2 (Conv2D)	(None,	68, 68, 64)	51264
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None,	34, 34, 64)	0
flatten (Flatten)	(None,	73984)	0
dense (Dense)	(None,	100)	739856
dropout (Dropout)	(None,	100)	0
dense_1 (Dense)	(None,	20)	2020
	/	10)	

lense_z	(Dense)	(None, 10)	210

Total params: 7,465,242

Trainable params: 7,465,242

Non-trainable params: 0

Epochs	Batch size	Accuracy
80	15	100%

****Double Trained****

Cass

2nd Place Model: "Nuper Nocte"

[25]: model.summary()

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	296, 296, 16)	416
<pre>max_pooling2d (MaxPooling2D)</pre>	(None,	148, 148, 16)	0
conv2d_1 (Conv2D)	(None,	144, 144, 32)	12832
<pre>max_pooling2d_1 (MaxPooling2</pre>	(None,	72, 72, 32)	0
conv2d_2 (Conv2D)	(None,	68, 68, 64)	51264
<pre>max_pooling2d_2 (MaxPooling2</pre>	(None,	34, 34, 64)	0
flatten (Flatten)	(None,	73984)	0
dense (Dense)	(None,	100)	7398500
dropout (Dropout)	(None,	100)	0
dense_1 (Dense)	(None,	20)	2020
dense_2 (Dense)	(None,	10)	210
Total params: 7,465,242 Trainable params: 7,465,242 Non-trainable params: 0			

Epochs	Batch Size	Accuracy
80	20	99.81%

Using model.evaluate on the generator

```
[31]: # Set the step size based on the amount of data and the batch size.
STEP_SIZE_TEST=test_generator.n//test_generator.batch_size
# Reset the gererator.
test_generator.reset()
# Evaluate and score all the data in the generator.
pred=model.evaluate(test_generator, steps=STEP_SIZE_TEST, verbose=1)
WARNING:tensorflow:sample_weight modes were coerced from
...
to
['...']
1/1 [======] - 67s 67s/step - loss: 0.0110 - accuracy: 0.9981
```

For wavelength 131 : (array([0]), array([23]))
For wavelength 1600 : (array([1]), array([70]))
For wavelength 1700 : (array([2]), array([71]))
For wavelength 171 : (array([3]), array([70]))
For wavelength 193 : (array([4, 5]), array([68, 1]))*
For wavelength 211 : (array([5]), array([49]))
For wavelength 304 : (array([6]), array([71]))
For wavelength 335 : (array([7]), array([23]))
For wavelength 4500 : (array([8]), array([71]))
For wavelength 94 : (array([9]), array([23]))

Cass

3rd place model: "Curiositas"

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
conv2d_4 (Conv2D)	(None,	296, 296, 16)	416
<pre>max_pooling2d_4 (MaxPooling2</pre>	(None,	148, 148, 16)	0
conv2d_5 (Conv2D)	(None,	144, 144, 32)	12832
max_pooling2d_5 (MaxPooling2	(None,	72, 72, 32)	0
conv2d_6 (Conv2D)	(None,	68, 68, 64)	51264
<pre>max_pooling2d_6 (MaxPooling2</pre>	(None,	34, 34, 64)	0
conv2d_7 (Conv2D)	(None,	30, 30, 128)	204928
<pre>max_pooling2d_7 (MaxPooling2</pre>	(None,	15, 15, 128)	0
flatten_1 (Flatten)	(None,	28800)	0
dense_3 (Dense)	(None,	100)	2880100
dropout_1 (Dropout)	(None,	100)	0
dense_4 (Dense)	(None,	20)	2020
dense_5 (Dense)	(None,	10)	210

Total params: 3,151,770

Trainable params: 3,151,770

Non-trainable params: 0

Epochs	Batch Size	Accuracy
80	10	98.51

[49]: A = np.sum(np.unique(Y_, return_counts=True)[1]) B = np.sum(np.abs(np.flip(np.unique(images_pull[1], return_counts=True, axis =0)[1]) - np.unique(Y_, return_counts=True)[1])) Score = 1 - B / (2 * A)

print(Score)

0.9851851851851852

For wavelength 131 : (array([0]), array([23]))
For wavelength 1600 : (array([1]), array([70]))
For wavelength 1700 : (array([2]), array([71]))
For wavelength 171 : (array([3]), array([70]))
For wavelength 193 : (array([3, 4, 5]), array([1, 67, 1]))
For wavelength 211 : (array([5]), array([49]))
For wavelength 304 : (array([6]), array([71]))
For wavelength 335 : (array([0, 7, 9]), array([5, 17, 1]))
For wavelength 4500 : (array([8]), array([71]))
For wavelength 94 : (array([9]), array([23]))

Joanna - VGG16 Network

- Started with full build of VGG 16 Model
- Pulled in Keras VGG Model
- Trained four different attempts:
 - 300x300, Epochs=10, Batch Size=5
 - 32x32, Epochs=10, Batch Size=50
 - 32x32, Epochs=30, Batch Size=100
 - 32x32, Epochs=80, Batch Size=100
- Accuracy hovered around .08 .10

model.add(Conv2D(64, kernel_size=(3,3),activation='relu',input_shape=(300, 300, 1)))
model.add(Conv2D(64, kernel_size=(3,3),activation='relu',input_shape=(300, 300, 1)))
model.add(MaxPooling2D(pool_size=(3, 3),strides=2))

```
model.add(Conv2D(128, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(128, kernel_size=(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
```

```
model.add(Conv2D(256, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(256, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(256, kernel_size=(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
```

```
model.add(Conv2D(512, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(512, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(512, kernel_size=(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
```

```
model.add(Conv2D(512, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(512, kernel_size=(3,3),activation='relu'))
model.add(Conv2D(512, kernel_size=(3,3),activation='relu'))
```

```
model.add(Flatten())
```

```
model.add(Dense(100, activation='relu')) # 4096 is number of nodes
#model.add(Dropout(.5))
model.add(Dense(20, activation='relu'))
```

Joanna – Dense Network vl

- Made up of one Flatten layer and four Dense layers (27 mil. parameters)
- Trained two attempts
 - 300x300, Epochs=10, Batch Size=5 Accuracy ~.80
 - 300x300, Epochs=30, Batch Size=5 Accuracy ~.99
- Saved model and tested it Acc. ~99.26%
- Misclassified 4 of the 540 testing images:

DenseNet_v1

Layer (type)	Output	Shape
flatten (Flatten)	(None,	90000)
dense (Dense)	(None,	300)
dense_1 (Dense)	(None,	200)
dense_2 (Dense)	(None,	100)
dense_3 (Dense)	(None,	10)

For wavelength 193 : (array([3, 4, 5]), array([3, 65, 1]))

Joanna – Dense Network v2 + v3

- Trained each
 - V2 Epochs=30, Batch Size=5 Accuracy ~.98
 - V3: Double-Trained, Epochs=10, Batch Size=10 Accuracy ~.99
- Saved both models and tested them
 - V2 Acc. ~99%
 - V3 Acc. ~99%
- Both misclassified 6 of the 540 testing images

DenseNet_v2

Layer (type)	Output	Shape
flatten_2 (Flatten)	(None,	900)
dense_8 (Dense)	(None,	30)
dense_9 (Dense)	(None,	20)
dense_10 (Dense)	(None,	10)
dense_11 (Dense)	(None,	10)

DenseNet_v3

Layer (type)	Output	Shape
flatten (Flatten)	(None,	900)
dense (Dense)	(None,	300)
dense_1 (Dense)	(None,	200)
dense_2 (Dense)	(None,	100)
dense_3 (Dense)	(None,	10)

Conclusions

- CNNs are ideal for scanning images for incredible details (i.e. sun spots) but may be unnecessary for tasks like identifying solar wavelength data. (i.e. dense layers only result)
- Network optimization can be incredibly time consuming: payoff between initial network training and accuracy?
- Different architectures and optimization parameters may be more suited for different image training goals

Recommendations

Image Preprocessing:

- Highly recommend having code capable of preprocessing any solar image in the following ways for applicability
 - Greyscale
 - Similar resolution (maybe .nearest() function) to what we have been working with
- Otherwise applicability is very limited & models do not work

